
27 570684 Ch21.qxd 3/31/04 2:59 PM Page 270

270 Part IV: C Level

The opposite of a global variable is a local variable. It’s what you have seen
used elsewhere in this book. A local variable exists inside only one function —
like the variable x in the BOMBER.C program. The x is a local variable, unique
to the functions in which it’s created and ignored by other functions in the
program.

� A global variable is available to all functions in your program.

� A local variable is available only to the function in which it’s created.

� Global variables can be used in any function without having to redeclare
them. If you have a global integer variable score, for example, you don’t
have to stick an int score; declaration in each function which uses
that variable. The variable has already been declared and is ready for
use in any function.

� Because global variables exist all over the place, naming them is impor­
tant. After you declare x as a global variable, for example, no other func­
tion can declare x as anything else without ticking off the compiler.

Making a global variable

Global variables differ from local variables in two ways. First, because they’re
global variables, any function in the program can use them. Second, they’re
declared outside of any function. Out there. In the emptiness. Midst the
chaos. Strange, but true.

For example:

#include <stdio.h>

int score;

int main()
{

Etc. . . .

Think of this source code as the beginning of some massive program, the
details of which aren’t important right now. Notice how the variable score is
declared. It’s done outside of any function, traditionally just before the
main() function and after the pound-sign dealies (and any prototyping non­
sense). That’s how global variables are made.

If more global variables are required, they’re created in the same spot, right
there before the main() function. Declaring them works as it normally does;
the only difference is that it’s done outside of any function.

